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ABSTRACT

In a knowledge-based economy, understanding local capabilities is essential for
identifying regional specialisations and technological trajectories. Recognizing
where valuable knowledge resides and how innovation systems evolve is

vital for enhancing the European Union’'s competitiveness and overcoming
some of the multifaceted challenges the world is facing today. From a policy
perspective, this understanding is a crucial input for research and innovation
(R&I) policies. Effective R&l policies require data-driven decisions based on
comprehensive analysis. However, traditional indicators tend to miss the
necessary nuances of technological progress by focusing on the quantity
instead of quality of knowledge output. This has prompted a growing interest
in complementary quality-based metrics, including the concepts of complexity
and relatedness. Complexity captures the diversity and interdependencies

of economic activities, while relatedness measures the connections between
different economic activities. This paper explains how incorporating these
metrics can enhance the ability of the EU to foster economic growth and
address societal challenges through the design of more impactful policies. In
particular, the paper focuses on how these metrics can inform three EU policy
priorities: safequarding access to critical technologies, fostering the green
transition and promoting greater territorial cohesion.
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1. INTRODUCTION

In today's economy, knowledge is a critical resource for long-term economic
growth (Romer, 1990). It tends to concentrate in densely populated areas,

where geographical proximity facilitates spillovers, rapid idea diffusion, and

the recombination of capabilities. Much of this knowledge, however, remains
tacit and context-dependent, thereby reinforcing the role of localised learning
environments and institutional ecosystems (Polanyi, 1966; Lundvall, 1992; Cooke,
2001). This localised concentration can further be enriched by global knowledge
flows through collaborations and networks. Through these processes, economies
can obtain a set of capabilities that form the basis for the development of unique
technological assets (Storper & Venables, 2004). These unique assets, which
are difficult to replicate, become the cornerstone of a sustainable competitive
advantage and contribute significantly to long-term economic development.

Consequently, it is important to understand the depth and the breadth of
knowledge capabilities within an economy. Traditional innovation indicators
often fall short due to their dominant focus on output quantity, which fails to
capture the more qualitative aspects underlying knowledge development and
application (Balland & Rigby, 2017). Newer quality-based indicators, such as
citation-weighted impact and novelty metrics, offer important improvements,
but do not assess how knowledge is structured, connected or embedded within
the economy. Yet, understanding these patterns is important as they shape an
economy'’s capacity to absorb new ideas, diversify into emerging sectors, and
sustain long-term innovation-driven growth. In response to these limitations,
the concepts of knowledge complexity and relatedness have been gaining
more prominence. Complexity measures an economy’s ability to produce a
diverse range of sophisticated technologies, thereby emphasizing both, the
variety of technologies it produces and their global rarity (Balland et al., 2022).
Relatedness measures the degree of similarity between different economic
activities based on the shared knowledge and competencies required

for their production (Boschma, 2017). Together, these concepts provide a
complementary and comprehensive framework for understanding the unique
strengths of an economy’s existing knowledge base.

Such insights offer valuable guidance for addressing challenges facing the
European Union (EU), e.g. increasing sustainability (Santoalha et al., 2021;
Shardella et al, 2022; Mealy and Teytelboym, 2022; European Commission,
2024) and reskilling (Stephany and Teutloff, 2024). The complexity framework
can help policymakers assess an economy's current capabilities and growth
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potential, highlight opportunities for diversification and design more targeted
interventions. It also enables continuous monitoring to ensure that policies
remain adaptive to changing economic and technological landscapes. This
approach is particularly valuable for research and innovation (R&l) policies
that aim to move beyond traditional models, which often focus solely on
technological innovation and economic growth, to create more holistic policies
capable of addressing grand societal challenges (Cavicchi et al,, 2023).

This paper is structured as follows: Section 2 provides an overview of the theory
and measurement of complexity, while Section 3 discusses how complexity can
serve as a tool for R&l policy. Section 4 presents case studies demonstrating the
potential of complexity in guiding current EU policy discussions, including the
safequarding of critical technologies, the acceleration of the green transition,
and the promotion of territorial cohesion. Through these examples, this paper
highlights the value of complexity for innovation policy practitioners.

2. COMPLEXITY: THEORETICAL
BACKGROUND

Knowledge plays a key role in shaping economic systems and driving long-
term economic growth (Romer, 1990). It accumulates through the exchange
of ideas and the combination of diverse expertise, facilitated by interactions
between individuals, firms and institutions located in close geographical
proximity (Storper & Venables, 2004). This implies that knowledge is not
created in isolation but through a systemic and interactive process embedded
within networks of economic and institutional actors, where learning occurs
through mutual engagement and contextual collaboration (Lundvall, 1992).
This learning is rooted in specific places, giving rise to regional innovation
systems in which innovation is fostered through local knowledge interactions
(Cooke, 2001). Since much of this knowledge is tacit, it remains closely tied to
its social and geographical context and cannot be easily codified or transferred
(Polanyi, 1958; Polanyi, 1966). However, local knowledge bases can be further
enriched by engaging within global knowledge flows through licensing
agreements, collaborations or personal networks, which complement and
build upon local capabilities (Archibugi & Michie, 1995; Doel & Hubbard, 2002;
Bathelt et al,, 2004).

As knowledge accumulates and diversifies, it creates a unique set of capabilities
(Storper, 1997) essential for technological development. However, not all
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technologies are equally valuable and have the same growth potential. Advanced
technologies, such as the Internet of Things, demand expertise across multiple
domains like cloud computing, wireless communication and embedded systems.
As a result, their development requires a deeper understanding and seamless
integration of these diverse knowledge areas, making them inherently complex
and challenging to replicate. These high-value, non-ubiquitous technologies
(Nelson & Winter, 1982) offer significant competitive advantages due to their
rarity and sophistication (Hidalgo & Hausmann, 2009). Understanding these
capabilities is crucial for uncovering a territory's technological trajectory and
revealing the geographical patterns of economic growth and development
(Schumpeter, 1942; Romer, 1990; Pugliese et al, 2018; Pintar & Sherngell, 2022;
Hidalgo & Hausmann, 2009; Hausmann et al., 2014; Tacchella et al., 2018).

The concept of knowledge complexity is central to these ideas. Knowledge
complexity relates to economic complexity, which explains an economy’s ability
to produce and export a wide range of goods (Hidalgo & Hausmann, 2009).
Knowledge complexity, however, focuses on an economy's capacity to produce
a diverse range of sophisticated technologies. More precisely, it considers both,
the variety and ubiquity of knowledge capabilities required for their production
(Balland & Rigby, 2017). Since these capabilities are not directly observable,
knowledge complexity is inferred using outcome-based approaches, such as
analysing patent data (Antonelli et al., 2017; Ilvanova et al., 2017).

Among the measures of knowledge complexity', the Knowledge Complexity
Index (KCI) adapted from the Economic Complexity Index (ECI) (Hidalgo &
Hausmann, 2009; Balland & Rigby, 2017), examines patent applications to
measure technological diversity (the number of technologies in which an
economy specialises) and ubiquity (the number of economies specialising in
this technology). Higher values of KCI signify that an economy produces diverse
technologies that are less commonly produced globally, thereby revealing a
deeper knowledge base. Similarly, the Technology Complexity Index (TCI)?
captures how complex a specific technology is by assessing how difficult it

1 Like with economic complexity, this literature has proposed different measures of knowledge comple-
xity; the most prominent are Sbardella et al. (2018)'s Technological Fitness and Balland et al. (2019)'s
Knowledge Complexity Index (KClI).

2 From a technical standpoint, KCI measures the complexity of a region/country’'s knowledge base con-
sidering how unique and diversified its innovation output is; whereas, TCI measures technological com-
plexity by evaluating how specialised and widely distributed different technologies are across regions/
countries (Balland & Righy, 2017). More in general, the KCl of a location is defined as the average of the
TCl of the technological activities (typically proxied by patent activities) that are located in it. Similarly,
the TCl of a technology is defined as the average KCl of the locations where that technology is observed
(Hidalgo, 2021). For more information see also The Observatory of Economic Complexity.
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is to patent in that area. Hence, TCl zooms in on the complexity of individual
technologies. Together, KCl and TCl indices can provide an indication of
proximity to the technological frontier (Schetter, 2022).

Another closely related concept is technological relatedness, which measures
the similarity between technologies based on the knowledge and competencies
required to produce them (Boschma, 2017). Two technologies are considered
related when they share similar knowledge or require overlapping skills
(Hidalgo et al., 2018; Balland et al., 2019; Pugliese et al, 2019). Relatedness

is often inferred from the geographic co-location of innovation activities, i.e,,
technologies that are often produced in the same location are considered
similar as their co-location suggests that they leverage the same local
capabilities. For example, economies with a strong robotics industry may

also excel in the automotive industry due to overlapping expertise. In other
words, relatedness provides insights into an economy’s proximity to a specific
technology, complementing traditional specialisation metrics like the Balassa
Index? by identifying untapped opportunities for diversification.

Knowledge complexity and relatedness are often used together to provide

a comprehensive understanding of an economy’s knowledge base. While
knowledge complexity reflects an economy’s ability to produce sophisticated
technologies, relatedness indicates how well it can expand into new, related
areas. These concepts reinforce each other dynamically: advancing into
related technologies increases knowledge complexity, which in turn facilitates
further diversification. This cycle boosts the ability to innovate and adapt,
contributing to long-term economic growth and resilience by enabling
economies to engage in technological advancements and respond to changing
global demand (e.g,, Liao, 2015).

3 The Balassa Index, also known as the Revealed Comparative Advantage (RCA) index, is a measure
that quantifies a country's comparative advantage in the production and export of specific goods or
services. It helps identify sectors in which a country is relatively more competitive in international
trade compared to others.
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3. USING COMPLEXITY IN RESEARCH
AND INNOVATION POLICY

The development of effective policies relies on evidence-based decision-
making and clear data analysis. Traditional indicators based on patent

counts, scientific publications and similar metrics offer valuable insights by
measuring the quantity of innovation outputs making them useful for quick
policy assessments, the monitoring of (relative) innovation performance and
easy communication to the wider public (Hollanders et al., 2009). However,
using the number of patents or publications implicitly assumes that they

all have the same value, failing to fully capture all nuances of technological
progress (Balland & Rigby, 2017), including potential heterogeneity in terms of
underlying know-how and links to pre-existing specialisation patterns. Indeed,
the dynamics of technological progress depend not only on output, but also on
the sophistication and relationships within an economy’s innovation ecosystem.

To address these gaps, policy frameworks are increasingly adopting a layered
approach to indicators, combining output metrics with more quality-driven
citation-weighted impact measures, novelty detection tools and composite
indicators. Citation-weighted indicators (Aksnes et al, 2019) capture the
influence of knowledge over time, showing how innovations contribute to future
developments. Novelty metrics (Verhoeven et al,, 2016), based on textual

and structural analysis of patents, identify whether innovations represent
incremental improvements or radical shifts. Composite indicators (Nardo et al,,
2008), like the European innovation Scoreboard or the Global Innovation Index,
go further by offering a broader view of innovation by integrating data on R&D
inputs, collaboration and commercialisation.

Complexity metrics offer a distinct yet complementary perspective to the
aforementioned indicators by focusing not just on innovation outputs, but also
on how they are embedded and connected within the system. These indicators
provide structural insight into technology linkages, assess the absorptive
capacity, and offer a forward-looking perspective by identifying potential
innovation pathways based on existing strengths. Complexity metrics are
compiled based on matrix factorization, which help preserve these relational
patterns, thereby enabling more nuanced analysis of innovation and growth
potential (Hidalgo, 2021; Hidalgo & Hausmann, 2009; Hausmann et al., 2014).
This makes the complexity framework particularly well-suited for guiding
innovation policies by examining both the current state and future potential of
an economy's innovation ecosystem.
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The concept of relatedness further enhances this understanding. Relatedness
assesses the feasibility of developing new technologies based on existing
capabilities and network connections, highlighting that technologies closely
linked to current strengths offer more feasible, less risky, and less costly
opportunities for diversification (e.g., Frenken et al., 2007; Boschma &
Frenken, 2011). These insights allow economies to strengthen their innovation
performance by leveraging existing assets and helping to build on current
strengths to explore new areas of innovation.

When combined with other factors, such as the social returns to research

and innovation investments, these insights enable policymakers to craft
tailored interventions that align with regional strengths and development
trajectories. Indeed, although complexity indices have been mainly used to
identify diversification paths (e.g., Hausmann et al, 2014; Deegan et al., 2021),
it can also provide a forward-looking perspective to help create environments
that support transitions into new, complex technological areas. This approach
encourages policymakers to plan and organise long-term strategies for
developing emerging technologies (e.g., Alshamsi et al., 2018; Waniek et al.,
2020). By understanding how technologies are interconnected, policymakers
can make more informed decisions about resource allocation, investments

in skills and infrastructure, and potential collaborations to support the
development or adoption of these technologies. Additionally, the complexity
toolbox can enable continuous monitoring, allowing strategies to be adapted to
evolving technological landscapes and economic conditions.

All these characteristics make complexity a powerful tool in the pursuit of
ambitious EU policy objectives. By obtaining a clear understanding of the
dynamic capabilities, more tailored interventions can be designed that allow
Member States to build on their strengths with the purpose of enhancing
overall innovation capacity, while mitigating the risks associated with
technological and economic shifts. In addition, tailored advice can also help
economies catch up with more advanced ones by identifying opportunities
for investment that promote convergence. This approach enhances Europe’s
competitiveness, improves living standards (European Commission, 2024),
reduces regional disparities, and increases cohesion through innovation.

As such, complexity thinking aligns well with the principles of National and
Regional Innovation Systems, offering a way to map interdependencies and
guide place-based strategies, but may require more adaptive and iterative
policy tools than currently standard.
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At the same time, the ability to structure and organise for long-term strategic
development is particularly relevant for the EU’s mission-oriented R&l

policies aimed at addressing societal challenges, such as climate change and
sustainable development. These challenges require a coordinated approach
across various economic areas. Complexity can offer valuable insights to guide
the development and coordination of the assets needed to address these
challenges. This approach enhances the capacity to deliver innovations that
are both technically feasible and socially meaningful, contributing to broader
systemic change. However, they may also challenge conventional top-down
governance approaches that favour linear planning.

Although promising, complexity's use in R&l policy is relatively recent. Initially,
it was applied to national-level phenomena, such as economic growth (eq.,
Hidalgo & Hausmann, 2009; Pugliese & Tacchella, 2021), income inequality
(e.g. Chu & Hoang, 2020) and sustainability (e.g, Mealy & Teytelboym, 2022;
Sbardella et al,, 2022). These applications allowed policymakers to capture
economic interdependencies and formalise principles of development, such
as complementarity (e.g., Rosenstein-Rodan, 1943; Hirschman, 1977). As the
limitations of linear innovation models became evident in addressing the
complexity of technological systems, complexity theory began to shape R&l
policies. Notably, it became a key component of the EU's Smart Specialisation
Strategies (S3) under Cohesion Policy, moving away from one-size-fits-all
approaches and instead fostering regional innovation by leveraging unique
regional strengths.

4. CASE STUDIES: COMPLEXITY
FOR A COMPETITIVE EUROPE

This section explores how complexity can be leveraged to address three
critical transformations which the EU must navigate to secure its future
competitiveness (Draghi, 2024): increasing technological sovereignty and
reducing dependencies, advancing the green transition and closing the
innovation divide. Case 1 highlights the usefulness of complexity metrics

to identify key technologies for future growth and investment decisions
while Case 2 explains how the European Green Deal can benefit from the
same metrics by identifying regions with the potential for green technology
development. Case 3 explores how complexity analysis can inform policy
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practitioners on how to reduce regional disparities in technological capabilities
by fostering cross-border collaboration.?

CASE 1: COMPLEXITY AND TECHNOLOGICAL SOVEREIGNTY

In the last decade, political and economic shocks have challenged the standard
globalisation growth model and its division of labour (European Commission,
2024). Protectionist policies and a revival of industrial policy are reshaping
Global Value Chains (GVCs), aiming to reduce reliance on imports, while
boosting national innovation, investments and growth (Aghion et al,, 2023). At
the same time, the growing securitisation and weaponisation of science and
technology policies have intensified debates on how the EU can safequard
access to critical technologies and reduce foreign interferences. While
ensuring the availability of critical technologies has always been a priority for
policymakers, the approach to securing these technologies is evolving as free
international technological cooperation and trade are undergoing significant
restructuring (European Commission, 2024).

To address these challenges, complexity metrics provide policymakers with

a data-driven lens towards technological sovereignty. As highlighted by Edler
et al, (2023), an effective strategy for technological sovereignty begins with
identifying which technologies are critical to the functioning of an economic
system, followed by an assessment of the system'’s ability to access and
develop them. Yet, this identification and assessment is complicated by the
rapid pace of technological change, the expanding set of policy objectives

as well as the general lack of data to inform development decisions. To this
purpose, complexity measures can offer valuable guidance by identifying
technologies with the highest growth potential, thereby providing data-driven
insight on where to redirect public resources. For example, as shown in Figure
1, complexity analysis indicates that digital technologies, such as the Internet of
Things (loT), artificial intelligence (Al) and cybersecurity stand out as complex
and hard to replicate fields. These are precisely the fields where strategic
investment could offer significant growth and competitiveness advantages
(Balland & Rigby, 2017; European Commission, 2024).

4 All cases are syntheses of existing studies, performed by the authors, curated to support the policy
argument.
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Figure 1. The complexity of key strategic technologies

Note: On the y-axis, technologies are ranked by Technology Complexity Index (TCI),
which measures complexity at the technology level, normalised between 0 and 100.
Source: The Science Research and Innovation Performance Report (SRIP) 2024.

Once critical technologies are identified, it is key to monitor their development
over time and assess both current capacity and future potential. Indicators
using patent counts or specialisation indices clearly highlight that the EU’s
technological performance in digital fields has been weakening thereby
broadening the gap with competitors like the US and China (European
Commission, 2024). However, these metrics are backward-looking and offer
limited insights into the EU's future technological potential. In this context,
relatedness indicators offer a more forward-looking lens, identify technological
trajectories that a country is more likely to pursue based on current strengths.

As shown in Figure 2, the EU faces a significant technological gap compared to
other key players in technologies such as Internet of Things, Al, blockchains,
cybersecurity and quantum computers - not only in terms of current
specialisation, but also when looking at the diversification potential in these
fields (captured by the relatedness density indicator). This implies that the EU's
current ability to build up capacity in such technologies is limited (European
Commission, 2024). On the contrary, the EU’s current specialisation is
stronger in technologies such as wind energy, hydrogen, and green transports,
whereas a higher potential for technological development is observed in

other important green fields (e.g., hydropower, geothermal energy). This is

a crucial aspect, as indicators such as relatedness density can be used as a
tool to identify the types of strategic technologies in which the EU could better
leverage its existing capabilities for further specialisation, thereby helping to
optimise investment priorities and improve the efficiency of public support.



elo | 1 ISSUE 57 | 2025

'
1
Internet of things - . ' . ‘
'
'
e o - '
Artificial intelligence o ' ‘ .
'
'
Cryptography and distributed ledger technology - L 3 '
yptography 9 gy — @ L J
1
'
Cybersecurity - ' T . ‘
'
'
§ 2 - '
Cloud and edge computing . . ‘ .
'
'
Quantum computers - . 1 . .
'
1
Hv jer - '
Hydropower . ‘ . ‘
' e CN
— '
e Geothermal energy - . 2 o e US
5 e EU
Nuclear energy - L ] : [ ] .
'
'
Solar energy - o .: ‘
'
1
Battery technology - o ' “
'
'
ol - 1
Biofuels L 2 ® g L
'
'
Wind energy -~ —® o '
1
'
Hydrogen - L 2 h .
'
1
Green transports -~ — @& + .
p ®
' ' : . .
0 25 50 75

Relatedness Density
Figure 2. The EU's position in complex technologies versus the US and China, 2019-2022

Note: The x-axis indicates the relatedness density in any of the technology fields considered.
On the y-axis, technologies are ranked by complexity levels, normalised between 0 and 100.
The size of the bubble captures the degree of specialisation that each country reportsin a
given technology field, as measured by the revealed comparative advantage (RCA).
Source: The Science Research and Innovation Performance Report (SRIP) 2024,

To further build up technological capacities and to guarantee access to critical
technologies, the EU can either deepen its domestic innovation capabilities

or rely on international sources of knowledge to acquire new capabilities

(e.g., via collaborations) (Boschma, 2005; Edler et al., 2023). While the EU

has long prioritised openness and international collaboration in science and
technology, there exists a natural tension between the priority of safequarding
the EU’'s technological sovereignty and fostering international R&I cooperation
(European Commission, 2024). This calls for empirical approaches able to
support policymakers in identifying potential international partners from
which the EU can gain in terms of technological complementarities, helping
diversify the EU's partners pool and reduce the risk of exacerbating one-sided
dependencies. As showcased by Figure 3, relatedness metrics can be used
also to this purpose®, as they can provide insights on the extent to which non-
EU countries can complement the EU’s technological deficiencies in different
technology fields, especially more complex ones.

5 In this context, the concept of relatedness added' can be used to capture technological capabilities
around a given technology that are missing in a country and that are available in other countries. For
more information, please refer to Balland & Boschma (2021).
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Partner

Figure 3. The EU's technological complementarities

Note: On the x-axis, technologies are ordered according to the degree of technology com-
plexity (TCl index). On the y-axis, countries are ranked according to the average related-
ness density added. Example of interpretation: South Korea, India and China show strong
specialisation in technologies which are closely related to cloud and edge computing, and
in which the EU shows weaker specialisation.

Source: The Science Research and Innovation Performance Report (SRIP) 2024.

CASE 2: COMPLEXITY AND FOSTERING THE GREEN TRANSITION

The European Green Deal aims to offset greenhouse gas emissions by 2050
while enhancing economic growth. To meet carbon neutrality goals, the EU

will have to accelerate the development of climate-related technologies as
climate targets cannot be met by only relying on existing technologies. In this
case, complexity and relatedness metrics can provide guidance regarding the
direction of policy intervention by evaluating which green technologies have
the potential to be developed in the EU and which areas are better placed to
do so based on their existing capabilities. This type of analysis can thus provide
insights into identifying investment opportunities to develop a particular green
technology and on which green technologies the EU should be focusing on.
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The literature on economic geography has long argued that regions, often
functioning as clusters of knowledge exchange, are the most apt unit of
analysis when thinking about capabilities, accumulation of know-how,
specialisation, innovation and diversification (Glaeser et al., 1992). It is therefore
likely that regional policies will increasingly embed European Green Deal
objectives. Vice versa, it is also likely that European Green Deal policies will
look towards regions for sources of innovation.

In this context, the framework of Economic Complexity proves particularly
relevant. There are already many studies that apply the paradigm of economic
complexity to understand the technological evolution towards the green
transition. In the academic literature, for instance, Sbardella et al. (2018)
calculate the complexity of green technologies. Mealy and Teytelboym (2022),
instead, propose indices of green complexity and green potential in traded
commodities. Caldarola et al. (2024) review these and other contributions to
document the emergence of the economic complexity approach to analyse
the sustainable transition. This rise is reflected also in the policy discourse,
especially at the regional level. In a JRC policy brief, Sbardella et al. (2022)
analyse the green potential of European regions. This report builds a mapping
of relatedness between non-green and green technologies to assess the green
potential of EU regions, based on their non-green technologies (as illustrated
in Figure 4).

2012-2017: Green Potential of A-H CPC class (99.0% Significance)

=N A HUMAN NECESSITIES W D: TEXTILES; PAPER G: PHYSICS
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Figure 4. Relatedness between non-green and green technologies

Note: Share of 99% statistically significant links in the non-green—green technology space
of each A-H CPC non green technology at 4-digit aggregation to all YO2 green technologies
at 8-digit aggregation level. Source: JRC policy brief (Sbardella et al, 2022).
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More recently, the Science, Research and Innovation Performance Report
(European Commission, 2024; Chapter 9) focuses on specific green
technologies. The analysis finds that, for instance, the EU is lagging in climate-
change mitigation technologies related to aeronautics. These are technologies
such as efficient propulsion systems or drag reduction techniques. The
analysis then assesses the capacity of European regions in this domain as well
as their potential, again based on the relatedness between the target green
technology and the non-green technologies that do exist in EU regions. Both
pieces of information are depicted in Figure 5. The regions in light and dark
blue already have high patenting activity in green aeronautics. The regions

in yellow and orange, instead, currently have no capacity in this technology,
but medium to high potential, given their current specialisation in related
technologies.

This analysis is useful for national or super-national policies that target
technologies of strategic importance. It can, in fact, help identify regions
with the greatest potential for development and impact. The analysis is also
useful for regional and cohesion policies as it can identify new pathways - or
untapped opportunities, which is how these are often refer to in the Smart
Specialisation literature - for development in lagging regions.

Figure 5. Map for green technology “aeronautics”

Source: The Science Research and Innovation Performance Report (SRIP) 2024.
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As a matter of fact, the ideas of Economic Complexity resonate well with Smart
Specialisation. Both approaches are place-based, aiming at exploiting local
capabilities to foster new technological trajectories; both are vertical, meaning
that investments should be targeted to a limited number of economic or
technological areas and both are based on the idea that unknown, untapped
opportunities exist (Diodato et al, 2023). As Foray (2015) argues, Smart
Specialisation is “the capacity of an economic system (a region for example) to
generate new specialties through the discovery of new domains of opportunity
and the local concentration and agglomeration of resources and competences in
these domains.”

CASE 3: COMPLEXITY AND R&l CONNECTIVITY NETWORKS

Technological and innovative capabilities vary significantly across the EU,
resulting in a concentration of advanced technologies in certain regions.
This is especially evident in the development of complex technologies, which
require multidisciplinary expertise and cross-border collaborations. Indeed,
as technologies become more complex, they increasingly rely on diverse
knowledge inputs from multiple regions and sectors, creating a greater need
for more interconnected R&I ecosystems (e.g., Balland & Rigby, 2017).

Consequently, regions that can effectively integrate into international
collaborative networks gain a clear advantage in developing and scaling
complex technologies (Fleming & Sorenson, 2001; Balland & Rigby, 2017).

In fact, there is a correlation between the ranking by complexity index

of a specific technology category and its level of European inter-country
collaborations, with a stronger correlation observed for more complex
technologies (see Figure 6). However, cross-border cooperation in the EU
remains limited, where the regional co-patenting network is fragmented
along national lines (European Commission, 2024), hindering the sharing of
knowledge and resources necessary for advancing complex technologies such
as loT, blockchain and cybersecurity. This fragmentation also exacerbates
regional disparities, as innovation remains concentrated in leading regions
that already possess the necessary expertise and infrastructure, while others
struggle to catch up.
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Figure 6. European inter-country collaborations by technology ranked according to
complexity index, 2014-2020

Source: The Science Research and Innovation Performance Report (SRIP) 2024.

Bridging these regional gaps and fostering more integrated, cross-border
innovation ecosystems is crucial for ensuring that Europe remains competitive
in the global technological landscape. R&l policies play an important role in
promoting international collaborations and knowledge diffusion across borders
(European Commission, 2022), helping to overcome traditional barriers to
knowledge exchange and enabling regions to benefit from collective expertise.
One example is the initiatives under the Framework Programme for R&l, which
aims to align regional strengths with broader European objectives, enabling
less-developed regions to contribute to complex technological advancements.

Nevertheless, in practice, the increasing complexity of knowledge that is being
produced and the speed at which new technologies are evolving can have a
profound impact on achieving truly inclusive collaborations. Indeed, despite the
EU's inclusive objectives, Balland et al., (2019b) show that pre-2004 member
states are more frequently positioned as central players in high-complexity
projects while post-2004 member states tend to participate in lower-
complexity projects. This division risks reinforcing a spatial concentration

of complex knowledge within pre-2004 member states. Without targeted
strategies to support capacity-building in post-2004 member states, this cycle
may continue, limiting these regions’ ability to engage meaningfully in the EU's
broader technological goals.
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Complexity analysis can support this capacity-building by identifying regional
strengths and weaknesses, revealing synergies between regions with
complementary expertise. This can help guide targeted EU interventions

to bridge gaps, strengthen knowledge networks and create more inclusive
innovation ecosystems. By highlighting regions’ relative positions in knowledge
networks, complexity metrics can help policymakers create partnerships that
ensure all regions can meaningfully engage in high-complexity technological
development. This approach enables the EU to strategically allocate resources,
promote cross-regional collaborations and support a more resilient and
balanced technological landscape.

LIMITATIONS OF COMPLEXITY

To ensure the correct application and interpretation of complexity for policy
purposes, it is important to recognise several limitations. First, although

the complexity metrics presented in this paper go beyond traditional well-
established metrics, they are still largely based on patent data, which may
underestimate local capabilities, as not all knowledge is captured in patents.
This is a well-known limitation of the use of patent data for analyses related
to the measurement of knowledge and innovation. However, standard patent
analysis perceives patents simply as an output value, while complexity uses
patents as a proxy to identify technological specialisation irrespective of
the overall absolute patent production. Complexity should therefore be less
affected by this limitation (Diodato et al, 2023). Second, complexity is more
effectively analysed when historical data on technologies are abundant and
may be less accurate for emerging technologies, where it may struggle to
capture rapid changes. Third, the use of patents to assess technological
opportunities assumes that the region or country can always enter in the
development of a technology if it possesses the necessary know-how. However,
even with the required capabilities, territories can choose not to be active

in a field for various reasons. Hence, while complexity can be used as an
instrument to assess capabilities or technological opportunities, it does not
provide direct solutions for the most appropriate strategy based on specific
territorial or sector characteristics.
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CONCLUSION

In the rapidly evolving global economy, the EU faces multifaceted challenges
in ensuring its future competitiveness while encouraging inclusivity and
sustainability. Navigating these challenges demands innovative approaches
that can complement more traditional innovation metrics. Knowledge
complexity and relatedness can be considered pivotal frameworks in this
context, offering powerful tools to understand and help improve economic and
innovation policies. Both concepts emphasise the dynamic and interconnected
nature of knowledge accumulation and technological specialisation. Complexity
metrics reveal existing strengths and new opportunities for diversification and
growth, while relatedness can identify synergies between current capabilities
and new technologies. Therefore, these concepts can contribute to the
formation of more tailored, data-driven interventions that align with regional
strengths and promote diversification.
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FIGURES

Figure 1. The complexity of key strategic technologies
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Note: On the y-axis, technologies are ranked by Technology Complexity Index (TCI),
which measures complexity at the technology level, normalised between 0 and 100.

Source: The Science Research and Innovation Performance Report (SRIP) 2024.

Figure 2. The EU's position in complex technologies versus the US and China,
2019-2022

Note: The x-axis indicates the relatedness density in any of the technology fields
considered. On the y-axis, technologies are ranked by complexity levels, normalised
between 0 and 100. The size of the bubble captures the degree of specialisation
that each country reports in a given technology field, as measured by the revealed
comparative advantage (RCA).

Source: The Science Research and Innovation Performance Report (SRIP) 2024.
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Figure 3. The EU's technological complementarities
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Note: On the x-axis, technologies are ordered according to the degree of technology
complexity (TCI index). On the y-axis, countries are ranked according to the average
relatedness density added. Example of interpretation: South Korea, India and China
show strong specialisation in technologies which are closely related to cloud and edge
computing, and in which the EU shows weaker specialisation.

Source: The Science Research and Innovation Performance Report (SRIP) 2024.

Figure 4. Relatedness between non-green and green technologies

2012-2017: Green Potential of A-H CPC class (99.0% Significance)
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Note: Share of 99% statistically significant links in the non-green—green technology

space of each A-H CPC non green technology at 4-digit aggregation to all YO2 green
technologies at 8-digit aggregation level. Source: JRC policy brief (Sbardella et al., 2022)
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Figure 5. Map for green technology “aeronautics”

Source: The Science Research and Innovation Performance Report (SRIP) 2024.

Figure 6. European inter-country collaborations by technology ranked

according to complexity index, 2014-2020
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